Computational Study of Scorpion Venom (Lychas Mucronatus) Activity as Antimicrobial Peptides (AMPs) to the SARS-CoV-2 Main Protease for the Future Coronavirus Disease (COVID-19) Inhibitors

PDF
Full Text
Taufik Muhammad Fakih

Abstract


The 2019 coronavirus pandemic disease (COVID-19) is still declared a global pandemic by the World Health Organization (WHO). Therefore, an effort that is considered effective in finding therapeutic agents is needed to prevent the spread of COVID-19 infection. One of the steps that can be chosen is by utilizing antimicrobial peptides (AMPs) from animal venom by targeting the specific receptor of SARS-CoV-2, namely the main protease (Mpro). Through this research, a computational approach will be conducted to predict antiviral activity, including protein-peptide docking using PatchDock algorithm, to identify, evaluate, and explore the affinity and molecular interactions of four types of antimicrobial peptides (AMPs), such as Mucroporin, Mucroporin-M1, Mucroporin-S1, and Mucroporin-S2 derived from scorpion venom (Lychas mucronatus) against main protease (Mpro) SARS-CoV-2. These results were then confirmed using protein-peptide interaction dynamics simulations for 50 ns using Gromacs 2016 to observe the molecular stability to the binding site of SARS-CoV-2 Mpro. Based on protein-peptide docking simulations, it was proven that the Mucroporin S-1 peptides have a good affinity against the active site area of SARS-CoV-2 Mpro, with an ACE score of −779.56 kJ/mol. Interestingly, Mucroporin-S1 was able to maintain the stability of its interactions based on the results of RMSD, RMSF, and MM/PBSA binding free energy calculations. The results of the computational approach predict that the Mucroporin-S1 peptide is expected to be useful for further research in the development of new antiviral-based AMPs for the COVID-19 infectious disease. 



DOI: http://dx.doi.org/10.20884/1.jm.2021.16.2.715

Metric logoArticle Metrics


This article has been viewed: 671 (times)
PDF file viewed / downloaded: 524 (times)

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Molekul

Logo Unsoed

Molekul

Jurnal Ilmiah Kimia
Department of Chemistry, Faculty of Mathematics and Natural Sciences,
Universitas Jenderal Soedirman, Purwokerto, Indonesia

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.