Interactions Between Environmental Factors and Zinc Concentrations in Porewater and Roots of Rhizophora sp. in Ampallas, Mamuju, West Sulawesi, Indonesia

Full Text
Rantih Isyrini, Shinta Werorilangi, Supriadi Mashoreng, Ahmad Faizal, Rastina Rachim, Akbar Tahir


The study was to determine the concentrations of Zn in porewater and fine roots of Rhizophora sp., and to examine their interactions with mangrove densities and physico-chemical. Porewater samples, fine roots,  and sediments were collected in a 100 m2 plot at each site with different mangrove densities. The average Zn concentrations in mangrove roots in the study area were 0 – 58.21 mg/kg, suggested the capability of mangrove roots in retaining Zn. The average dissolved Zn concentrations in porewater were 0.63 mg/L – 3.50 mg/L, illustrated the amount of Zn bioavailable form and its potential release to the adjacent environment. The Zn concentrations in porewater did not correlate significantly with the densities of mangroves. The concentrations of Zn in roots increased as the densities were higher, which is possibly caused by the absence of mangrove at Site 1. The study discovered the important roles of organic content and silt/clay in Zn sorption thus affect Zn levels in porewater. The concentrations of Zn in mangrove roots increased as the pH of sediment and porewater decreased.


Zinc, porewater, mangrove roots, environmental variables


Abrahim, G. M. S., Parker, R. J., & Nichol, S. L. (2007). Distribution and assessment of sediment toxicity in Tamaki Estuary, Auckland, New Zealand. Environmental Geology, 52(7), 1315-1323. doi: 10.1007/s00254-006-0570-0

Aksornkoae, S. (2004). Sustainable use and conservation of mangrove forest resources with emphasis on policy and management practices in Thailand. In M. Vanucci (Ed.), Mangrove management and conservation : present and future (pp. 149-160). New York, NY: United Nation University.

Alongi, D. M. (2002). Present state and future of the world’s mangrove forests. Environmental Conservation, 29(3), 331-349. doi: 10.1017/S0376892902000231

APHA 1999. Standard method for the examination of water and wastewater (20th ed). Washington, DC: American Public Health Association.

Bradl, H., Kim, C., Kramar, U. & Stüben, D. (2005). Chapter 2 Interactions of heavy metals. In H. B. Bradl, (Ed.), Interface science and technology (pp. 28-164). Amsterdam: Elsevier.

Broadley, M. R., White, P. J., Hammond, J. P., Zelko, I. & Lux, A. (2007). Zinc in plants. New Phytologist, 173(4), 677-702. doi: 10.1111/j.1469-8137.2007.01996.x

Chaudhuri, P., Nath, B. & Birch, G. (2014). Accumulation of trace metals in grey mangrove Avicennia marina fine nutritive roots: The role of rhizosphere processes. Marine Pollution Bulletin, 79(102), 284-292. doi:

Chaney, R. L. (2010). 17. Cadmium and Zinc. In P. S. Hooda (Ed.), Trace elements in soils (pp. 409-440). West Sussex, United Kingdom: John Wiley & Sons Ltd.

Clark, M. W., McConchie, D., Saenger, P. & Pillsworth, M. (1997). Hydrological controls on copper, cadmium, lead and zinc concentrations in an anthropogenically polluted mangrove ecosystem, Wynnum, Brisbane, Australia. Journal of Coastal Research, 13(4), 1150-1158. Retrieved from

Defew, L. H., Mair, J. M. & Guzman, H. M. (2005). An assessment of metal contamination in mangrove sediments and leaves from Punta Mala Bay, Pacific Panama. Marine Pollution Bulletin, 50, 547-552. doi: 10.1016/j.marpolbul.2004.11.047

Du Laing, G., Rinklebe, J., Vandecasteele, B., Meers, E. & Tack, F. M. G. (2009). Trace metal behaviour in estuarine and riverine floodplain soils and sediments: A review. Science of The Total Environment, 407(13), 3972-3985. doi:

Friedland, A. J. (1990). The Movement of Metals Through Soil An Ecosystem. In A. J. Shaw (Ed.) Heavy metal tolerance in plants: Evolutionary aspects (pp. 7-19). Boca Raton, Florida: CRC Press.

Harbison, P. (1986). Mangrove muds--A sink and a source for trace metals. Marine Pollution Bulletin, 17(6), 246-250. doi:

Heiri, O., Lotter, A. F. & Lemcke, G. (2001). Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. Journal of Paleolimnology, 25(1), 101-110.

Hogarth, P. J. (2015). The biology of mangroves and seagrasses. Oxford University Press.

Kabata-Pendias, A. (2011). Trace elements in soils and plants (4th ed.). Boca Raton, Florida: CRC Press.

Khrisnamurty, K. V., Shprirt, E. & Reddy, M. M. (1976). Trace metal extraction of soils and sediments by nitric acid-hydrogen peroxide. Atomic Absorption Newsletter, 15, 68-70.

MacFarlane, G. R. & Burchett, M. D. (2001). Photosynthetic pigments and peroxidase activity as indicators of heavy metal stress in the grey mangrove, Avicennia marina (Forsk.) Vierh. Marine Pollution Bulletin, 42(3), 233-240. doi:

MacFarlane, G. R., Pulkownik, A. & Burchett, M. D. (2003). Accumulation and distribution of heavy metals in the grey mangrove, Avicennia marina (Forsk.)Vierh.: biological indication potential. Environmental Pollution, 123, 139-151.

Marchand, C., Lallier-Verges, E., Baltzer, F., Albéric, P., Cossa, D., & Baillif, P. (2006). Heavy metals distribution in mangrove sediments along the mobile coastline of French Guiana. Marine Chemistry, 98(1), 1-17. doi:

Marchand, C., Fernandez, J. M. & Moreton, B. (2016). Trace metal geochemistry in mangrove sediments and their transfer to mangrove plants (New Caledonia). Science of The Total Environment, 562, 216-227. doi:

MENKLHRI (2004). Keputusan Menteri Lingkungan Hidup Nomor 51 Tahun 2004 tentang Penetapan baku mutu air laut. Kementerian Lingkungan Hidup Republik Indonesia.

Mulligan, C. N., Yong, R. N. & Gibbs, B. F. (2001). Remediation technologies for metal-contaminated soils and groundwater: an evaluation. Engineering Geology, 60(1-4), 193-207. doi:

Otero, X. L. & Macı́as, F. (2002). Spatial and seasonal variation in heavy metals in interstitial water of salt marsh soils. Environmental Pollution, 120(2), 183-190. doi:

Percival, J. B. & Lindsay, P. J. 1997. Chapter two. Measurement of physical properties of sediments. In A. Mudroch, J. M. Azcue, & P. Mudroch (Eds.) Manual of physico-chemical analysis of aquatic sediments (pp 7-38). Florida: CRC Press, Inc.

Rapin, F., Nembrini, G. P., Förstner, U. & Garcia, J. I. (1983). Heavy metals in marine sediment phases determined by sequential chemical extraction and their interaction with interstitial water. Environmental Technology Letters, 4(8-9), 387-396. doi: 10.1080/09593338309384222

Silva, C. A. R., Da Silva, A. P. & De Oliveira, S. R. (2006). Concentration, stock and transport rate of heavy metals in a tropical red mangrove, Natal, Brazil. Marine Chemistry, 99(1-4), 2-11. doi: 10.1016/j.marchem.2005.09.010

Sullivan, P. & Taylor, K. G. (2003). Sediment and porewater geochemistry in a metal contaminated estuary, Dulas Bay, Anglesey. Environmental Geochemistry and Health, 25(1): 115–122.

Tam, N. F. Y. & Wong, Y. S. (2000). Spatial variation of heavy metals in surface sediments of Hong Kong mangrove swamps. Environmental Pollution, 110(2), 195-205. doi:

Tomasick, T., Mah, J. M., Nontji, A. & Moosa, M. K. (1997). Chapters 19. Mangroves. In T.Tomasick, J. M. Mah, A. Nontji & M. K. Moosa (Eds.), The Ecology of the Indonesian seas. Part II (pp. 907–999). Singapore: Periplus Editions (HK) Ltd.

Walters, B. B., Rönnbäck, P., Kovacs, J. M., Crona, B., Hussain, S. A., Badola, R., Primavera, J. H., Barbier, E. & Dahdouh-Guebas, F. (2008). Ethnobiology, socio-economics and management of mangrove forests: A review. Aquatic Botany, 89(2), 220-236. doi:

Zhou, Y. W., Zhao, B., Peng, Y. S., & Chen, G. Z. (2010). Influence of mangrove reforestation on heavy metal accumulation and speciation in intertidal sediments. Marine Pollution Bulletin, 60(8), 1319-1324. doi:

View Counter: Abstract = 46 (times), and PDF = 19 (times)


  • There are currently no refbacks.


Jurnal Ilmiah Kimia
Department of Chemistry, Faculty of Mathematics and Natural Sciences,
Universitas Jenderal Soedirman, Purwokerto, Indonesia

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.