Evaluation of Free Radical Scavenging Activity in Ethanolic Extract from Promising Accessions of Curcuma aeruginosa RoxB.

Full Text
Waras Nurcholis, Nurul Khumaida, Muhamad Syukur, Maria Bintang


This study evaluated the free radical scavenging activity in ethanolic extracts from 20 accessions of Curcuma aeruginosa. The radical scavenging activity of the extract accessions was investigated with 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical. IC50 values for DPPH radical scavenging activity ranged from 89.81 to 505.65 µg mL-1. Based on IC50 values, twenty accessions of C. aeruginosa can be divided into three groups: strong (two accessions); moderate (seventeen accessions); and low (one accession) of DPPH scavenger. Sukoharjo (SH) and Muara Bungo (MB) showed promising accessions for antioxidant potential, thus these accessions important to selection for future breeding program in pharmaceutical products.


Antioxidant; breeding; DPPH; free radical; temu ireng;


Amalraj, A., Pius, A., Gopi, S., & Gopi, S. (2017). Biological activities of curcuminoids, other biomolecules from turmeric and their derivatives–A review. Journal of Traditional and Complementary Medicine, 7, 205-233.

Bayr, H. (2005). Reactive oxygen species. Critical Care Medicine, 33(12), S498-S501.

Bhattacharya, S. (2015). Reactive oxygen species and cellular defense system Free Radicals in Human Health and Disease (pp. 17-29): Springer.

Bi, W., He, C., Ma, Y., Shen, J., Zhang, L. H., Peng, Y., & Xiao, P. (2016). Investigation of free amino acid, total phenolics, antioxidant activity and purine alkaloids to assess the health properties of non-Camellia tea. Acta Pharmaceutica Sinica B, 6(2), 170-181.

Bos, R., Windono, T., Woerdenbag, H. J., Boersma, Y. L., Koulman, A., & Kayser, O. (2007). HPLC‐photodiode array detection analysis of curcuminoids in Curcuma species indigenous to Indonesia. Phytochemical Analysis, 18(2), 118-122.

Carmona-Jiménez, Y., García-Moreno, M. V., Igartuburu, J. M., & Barroso, C. G. (2014). Simplification of the DPPH assay for estimating the antioxidant activity of wine and wine by-products. Food Chemistry, 165, 198-204.

George, M., & Britto, S. J. (2015). Phytochemicaland antioxidant studies on the essential oil of the rhizome of Curcuma aeruginosa Roxb. International Research Journal of Pharmacy, 6(8), 573-579.

Guo, W., Saito, S., Sanchez, C. G., Zhuang, Y., Rosero, R. E. G., Shan, B., . . . Lasky, J. A. (2017). TGF-β1 Stimulates HDAC4 Nucleus to Cytoplasm Translocation and NADPH Oxidase4-Derived Reactive Oxygen Species in Normal Human Lung Fibroblasts. American Journal of Physiology-Lung Cellular and Molecular Physiology, ajplung. 00256.02016.

Halliwell, B., & Gutteridge, J. M. (2015). Free radicals in biology and medicine: Oxford University Press, USA.

Hecht, F., Pessoa, C. F., Gentile, L. B., Rosenthal, D., Carvalho, D. P., & Fortunato, R. S. (2016). The role of oxidative stress on breast cancer development and therapy. Tumor Biology, 37(4), 4281-4291.

Jeong, S. C., Tulasi, R., & Koyyalamudi, S. R. (2016). Antioxidant capacities of hot water extracts and endopolysaccharides of selected chinese medicinal fruits. Cancers, 8(3), 33.

Kilanczyk, E., Saraswat Ohri, S., Whittemore, S. R., & Hetman, M. (2016). Antioxidant protection of NADPH-depleted oligodendrocyte precursor cells is dependent on supply of reduced glutathione. ASN Neuro, 8(4), 1759091416660404.

Li, J., Lin, J., Xiao, W., Gong, Y., Wang, M., Zhou, P., & Liu, Z. (2013). Solvent extraction of antioxidants from steam exploded sugarcane bagasse and enzymatic convertibility of the solid fraction. Bioresource Technology, 130, 8-15.

Li, W. J., Cheng, X. L., Liu, J., Lin, R. C., Wang, G. L., Du, S. S., & Liu, Z. L. (2012). Phenolic compounds and antioxidant activities of Liriope muscari. Molecules, 17(2), 1797-1808.

Nickavar, B., Alinaghi, A., & Kamalinejad, M. (2008). Evaluation of the antioxidant properties of five Mentha species. Iranian Journal of Pharmaceutical Research, 7(3), 203-209.

Nurcholis, W., Khumaida, N., Syukur, M., & Bintang, M. (2016a). Variability of curcuminoid content and lack of correlation with cytotoxicity in ethanolic extracts from 20 accessions of Curcuma aeruginosa RoxB. Asian Pacific Journal of Tropical Disease, 6(11), 887-891.

Nurcholis, W., Khumaida, N., Syukur, M., & Bintang, M. (2016b). Variability of total phenolic and flavonoid content and antioxidant activity among 20 Curcuma aeruginosa Roxb. accessions of Indonesia. Asian Journal of Biochemistry, 11, 142-148.

Nurcholis, W., Khumaida, N., Syukur, M., Bintang, M., & Ardyani, I. D. A. A. C. (2015). Phytochemical screening, antioxidant and cytotoxic activities in extracts of different rhizome parts from Curcuma aeruginosa Roxb. International Journal of Research in Ayurveda and Pharmacy, 6(5), 634-637.

Onoue, T., Goto, M., Tominaga, T., Sugiyama, M., Tsunekawa, T., Hagiwara, D., . . . Arima, H. (2016). Reactive oxygen species mediate insulin signal transduction in mouse hypothalamus. Neuroscience Letters, 619, 1-7.

Park, G., Sim, Y., Lee, W., Sung, S. H., & Oh, M. S. (2016). Protection on skin aging mediated by antiapoptosis effects of the water lily (Nymphaea Tetragona GEORGI) via reactive oxygen species scavenging in human epidermal keratinocytes. Pharmacology, 97(5-6), 282-293.

Perera, H. D. S. M., Samarasekera, J. K. R. R., Handunnetti, S. M., & Weerasena, O. V. D. S. J. (2016). In vitro anti-inflammatory and anti-oxidant activities of Sri Lankan medicinal plants. Industrial Crops and Products, 94, 610-620.

Phaniendra, A., Jestadi, D. B., & Periyasamy, L. (2015). Free radicals: properties, sources, targets, and their implication in various diseases. Indian Journal of Clinical Biochemistry, 30(1), 11-26.

Radak, Z., Suzuki, K., Higuchi, M., Balogh, L., Boldogh, I., & Koltai, E. (2016). Physical exercise, reactive oxygen species and neuroprotection. Free Radical Biology and Medicine, 98, 187-196.

Rajamma, A. G., Bai, V., & Nambisan, B. (2012). Antioxidant and antibacterial activities of oleoresins isolated from nine Curcuma species. Phytopharmacology, 2(2), 312-317.

Rimessi, A., Previati, M., Nigro, F., Wieckowski, M. R., & Pinton, P. (2016). Mitochondrial reactive oxygen species and inflammation: Molecular mechanisms, diseases and promising therapies. The International Journal of Biochemistry & Cell Biology, 81, 281-293.

Sverdlov, A. L., Elezaby, A., Qin, F., Behring, J. B., Luptak, I., Calamaras, T. D., . . . Shirihai, O. S. (2016). Mitochondrial reactive oxygen species mediate cardiac structural, functional, and mitochondrial consequences of diet‐induced metabolic heart disease. Journal of the American Heart Association, 5(1), e002555.

Theanphong, O., Mingvanish, W., & Kirdmanee, C. (2013). Chemical constituents and biological activities of essential oil from Curcuma aeruginosa RoxB. rhizome. Bulletin of Health, Science and Technology, 13(1), 6-16.

Tostes, R. C., Carneiro, F. S., Carvalho, M. H. C., & Reckelhoff, J. F. (2016). Reactive oxygen species: players in the cardiovascular effects of testosterone. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 310(1), R1-R14.

DOI: http://dx.doi.org/10.20884/1.jm.2017.12.2.350

Metric logoArticle Metrics

This article has been viewed: 1465 (times)
PDF file viewed / downloaded: 713 (times)


  • There are currently no refbacks.

Copyright (c) 2017 Molekul

Logo Unsoed


Jurnal Ilmiah Kimia
Department of Chemistry, Faculty of Mathematics and Natural Sciences,
Universitas Jenderal Soedirman, Purwokerto, Indonesia

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.