The Effect of pH and Aging Time on the Synthesis of TiO2 – Chitosan Nanocomposites as Photocatalyst by Sol-Gel Method at Room Temperature

Full Text
Imelda Fajriati, M Mudasir, Endang Tri Wahyuni


The synthesis of TiO2–chitosan nanocomposite photocatalyst using Titanium(IV)-Isopropoxide (TTIP) as precursors and chitosan as host material has been conducted. The synthesis was carried out using sol-gel method at room temperature and aging to grow crystal seeds and generate nanoparticles. The success of forming nano-sized anatase phase TiO2 nanocrystal was strongly influenced by the sol pH system during hydrolysis and the aging time. The effect of sol pH system and aging time to the crystallinity level and particle size were examined using X-Ray Diffraction (XRD), Transmission Electron Microscopy (TEM) and Diffuse Reflectance UV-Spectroscopy (DR-UV). The results showed that TiO2 produced in acidic pHs (pH 2-4) tended to have higher crystallinity level than that produced in weakly alkaline (pH > 6), which prone to be amorphous. The longer aging time (> 14 days) also tended to produce the amorphous phase. Furthermore, chitosan as a host material had a notable influence in determining the crystallinity level and particle size of TiO2 in TiO2–chitosan nanocomposite.


TiO2 – Chitosan nanocomposite, host material, sol-gel method


Andayani, W., dan Sumartono, A., (2007).TiO2 and TiO2/Active carbon photocatalysts immobilized on titanium plates, Indo. J. Chem., 7, 3, 238–241

Angela, W., Walid, A.D., Hanhua L., Yau Shan S., (2014). The effect of aging and precursor concentrationon room-temperature synthesis of nanocrystalline anatase TiO2, Mater. Letters, 117, 82-85

Chang-Sung, Bin Kang, Yao-dong Dai, Hong-xu Zhang and Da Chen, (2011).One-step fabrication of biocompatible chitosancoatedZnS and ZnS:Mn2+ quantum dots via a gradiationRoute, Nanoscale Res. Let., 6:591

David, B., (2007). Self cleaning titania polyurethane composites, Monograph Thesis, Master of Engeneering Science, Univ. Of Western Ontario London, Canada

Doeuff S, Henry M., and Sanchez, C., (1990). Sol-gel synthesis and characterization of titanium oxo-acetate polymers, Mat. Res. Bul., 25, 1519 – 1529

Dunbar, P., Birnie IIIa, and Norbert, J. B., (1999). 1H and 13C NMR observation of the reaction of acetic acid with isopropoxide, Mater. Chem. Physics, 59, 26 – 35

Dorian, A. H., Charles, C. S., (2011). Review of the anatase to rutile phase transformation, Mater. Sci, 46, 855–874

Fajriati, I., Mudasir, E.T. Wahyuni., “Room-Temperature Synthesis of TiO2 – Chitosan Nanocomposites Photocatalyst”, Proceeding of The 3rd Annual Basic Science Int`l Conference 2013, Faculty Mathematic and Natural Science, University of Brawijaya, Malang of Indonesia, pp. C10-1 – C10 -5, 2013

Fajriati, I., Mudasir, E.T. Wahyuni., (2014). Photocatalytic Decolorization Study of Methyl Orange by TiO2–Chitosan Nanocomposites, Indones. J. Chem, Vo 14, No. 3

Fajriati, I., Mudasir, E.T. Wahyuni., (2014). The Influence of Cu(II) on Methyl Orange and Methylene Blue Photodegradation Catalyzed by TiO2 – Chitosan Nanocomposites, Intl. J. Adv. Chem. Eng. Biol. Sci. (IJACEBS) Vol. 1, Issue 1 ISSN 2349-1507 EISSN 2349-1515

Guibal, E., 2005, Heterogeneous catalysis on chitosan-based materials: a Review, Prog. Polym. Sci. 30, 71–109

Hosseingholi, M., Pazouki, A. H., and Aboutalebi, S. H., (2011).Room Temperature Synthesis of Nanocrystalline Anatase Sols and Preparation of Uniform NanostructuredTiO2 Thin Films: Optical and Structural Properties, J. Appl. Phys. 44,(8pp) doi:10.1088/0022-3727/44/5/055402

Janus, M., Ewelina, K. N., Antoni, M. W., (2011). Determination of the Photocatalytic Activity of TiO2 with High Adsorption Capacity, React. Kinet. Mech. Cat, 103, 279 – 278

Mohammad, A. B., Hamed, E., Nasser, M., Mohammad S., (2011). Sol-Gel Low-temperature Synthesis of Stable Anatase-type TiO2 Nanoparticles Under Different Conditions and its Photocatalytic Activity, Photochem. Photobiol., 87, 1002–1008

Mortein, S. E., Erik, G., Søgaard, (2010). Sol–gel reactions of titanium alkoxides and water: influence of pH and alkoxy group on cluster formation and properties of the resulting products, J. Sol-Gel Sci. Technol., 53, 485–497

Nawi, M.A., and Sabar, S., Photocatalytic Decolourisation of Reactive Red 4 Dye by an Immobilised TiO2/Chitosan Layer by Layer System, (2012).J. Colloid Inter. Sci., 372, 80–87

Niancai, C., Richard, A. W., Mu, P., Shichun, M., Liza, R., Shik, C. T., and Frank, M., (2010). One-Step Growth of 3–5nm Diameter Palladium Electrocatalyst in a Carbon Nanoparticle–Chitosan Host and Characterization for Formic Acid Oxidation, Electrochim. Acta, 55, 6601–6610

Pandiangan, D.K., dan Simanjuntak, W., (2013).Transesterification of coconut oil using dimethyl carbonated and TiO2/SiO2 heterogeneous catalyst, Indo. J. Chem., 13, 1, 47–52

Shan, W., Yi, H., Minyan, Z., Yongsheng, W., Siping, H., and Yuanzi, G., (2011). Synthesis of MS (M=Zn, Cd and Pb)–Chitosan Nanocomposite Film Via Simulating Biomineralization Method, Adv. Polym. Tech., Vol. 30, No. 4, 269–275

Silva, M.A., Andrea, C. K., Theo, G.K., (2012).Modelling natamycin release from alginate/chitosan active films, Int. J. Food Sci. Tech., 47, 740–746

Su, H., Enzan, C., and Tianwei, T., (2010). Antimicrobial Properties of Silver Nanoparticles Synthesized by Bioaffinity Adsorption Coupled with TiO2Photocatalysis, J. Chem. Technol. Biotechnol., 86: 421–427

Su, H., Tingting, Q., Tianwei, T., (2011). The Bactericidal and Mildew-Proof Activity of a TiO2–Chitosan Composite, J.Photochem. Photobiol. A: Chem., 218, 130–136

Sugimoto, T., Zhao, X., Anda, M., (2002). Synthesis of uniform anatase TiO2 nanoparticle by sol gel methods. Solution chemistry of Ti(OH)6(4-n) complexes, J. Coll. Interf. Sci., 252, 339-346

Wahyuni, E.T., Kunarti, E.S., and Mudasir, (2010). Preparation of TiO2-Resin Nanocomposite by Ion Exchange as Photocatalyst for Mercury Removal by Photoreduction Method, J. Ion Exchange, Vol. 21, No. 3. Pp. 304 – 309, ISSN. 1884-3360

Wijaya, K., Sugiharto, E., Fatimah, I., Sri Sudiono, Diyan., (2006). Utilisasi TiO2-Zeolit dan Sinar UV untuk Fotodegradasi Zat Warna Congo Red, Vol 11, No 3

Xiaobo, C., and Samuel, S. M., (2007). Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications and Applications, Chem. Rev., 107, 2891 – 2896

Xiliang, N., Shuping, Z., Gloria, M., dan Karl, S., (2009). Doping of TiO2 Polymorphs for Altered Optical and Photocatalytic Properties, Int`l. J. Photoenergy., Article ID 294042,

Yanasigawa, K., and Ovenstone, J., (1999)., Crystallization of Anatase from Amorphous Titania Using the Hydrothermal Technique: Effects of Starting Material and Temperature, J. Phys. Chem., B, 7781-7787

Yasuhiro, S., Yoshitsune, S., Daisuke, I., and Takayuki, H., (2009). Effect of Substrate Polarity on Photocatalytic Activity of Titanium Dioxide Particles Embedded in Mesoporous Silica, J. Catalyst., 264, 175 – 183

Zainal, Z., Lee Kong, Hussein, M. Z., Abdul, H. A., and Imad, R., (2009). Characterization of TiO2–Chitosan/Glass Photocatalyst for The Removal of Monoazo Dye via Photodegradation – Adsorption Process, J. Hazard. Mater., 164, 138-145


Metric logoArticle Metrics

This article has been viewed: 2061 (times)
PDF file viewed / downloaded: 1114 (times)


  • There are currently no refbacks.

Copyright (c) 2017 Molekul

Logo Unsoed


Jurnal Ilmiah Kimia
Department of Chemistry, Faculty of Mathematics and Natural Sciences,
Universitas Jenderal Soedirman, Purwokerto, Indonesia

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.