DESIGN OF LOW CYTOTOXICITY DIARYLANILINE DERIVATIVES BASED ON QSAR RESULTS: AN APPLICATION OF ARTIFICIAL NEURAL NETWORK MODELLING

PDF
Full Text
Ihsanul Arief, Ria Armunanto, Bambang Setiaji, Muhammad Fachrie

Abstract


Study on cytotoxicity of diarylaniline derivatives by using quantitative structure-activity relationship (QSAR) has been done. The structures and cytotoxicities of  diarylaniline derivatives were obtained from the literature. Calculation of molecular and electronic parameters was conducted using Austin Model 1 (AM1), Parameterized Model 3 (PM3), Hartree-Fock (HF), and density functional theory (DFT) methods.  Artificial neural networks (ANN) analysis used to produce the best equation with configuration of input data-hidden node-output data = 5-8-1, value of r2 = 0.913; PRESS = 0.069. The best equation used to design and predict new diarylaniline derivatives.  The result shows that compound N1-(4′-Cyanophenyl)-5-(4″-cyanovinyl-2″,6″-dimethyl-phenoxy)-4-dimethylether benzene-1,2-diamine) is the best-proposed compound with cytotoxicity value (CC50) of 93.037 μM.


References


Arief, I., Armunanto, R. and Setiaji, B., 2013, Study on Anti-Hiv Activity of Diarylaniline Derivatives using Quantitative Structure-Activity Relationship (QSAR), Indonesian Journal of Chemistry 13(2): 129-135.

Deeb O. and Drabh, M., 2010, Exploring QSARs of Some Analgesic Compoundsby PC-ANN, Chemical Biology and Drug Design 76: 255-262.

Deeb, O., and Jawabreh, M., 2012, Exploring QSARs for Inhibitory Activity of Cyclic Urea and Nonpeptide-Cyclic Cyanoguanidine Derivatives HIV-1 Protease Inhibitors by Artificial Neural Network, Advances in Chemical Engineering and Science 2: 82-100.

Ekins, S. and Williams, A.J., 2012, The Future of Computational Models for Predicting Human Toxicities, Altex Proceedings, 1/12, Proceedings of WC8.

Eroğlu, E., Türkmen, H., Güler, S., Palaz, S., and Oltulu, O., 2007, A DFT-Based QSARs Study of Acetazolamide/Sulfanilamide Derivatives with Carbonic Anhydrase (CA-II) Isozyme Inhibitory Activity, International Journal of Molecular Science 8: 145-155.

Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J., 2009, Gaussian 09, Revision A.02, Gaussian, Inc., Wallingford CT.

Gacche, R.N. and Jadhav, S.G., 2012, Antioxidant Activities and Cytotoxicity of Selected Coumarin Derivatives: Preliminary Results of a StructureeActivity Relationship Study Using Computational Tools, Journal of Experimental and Clinical Medicine 4(3): 165-169.

Hemmateenejad, B., Javidnia, K., Nematollahi, M., and Elyasi, M., 2009, QSAR Studies on the Antiviral Compounds of Natural Origin, Journal of Iranian Chemical Society 6(2): 420-435.

Hosseini, S., Monajjemi, M., Rajaeian, E., Haghgu, M., Salari, A. and Gholami, M.R., 2013, A Computational Study of Cytotoxicity of Substituted Amides of Pyrazine2-carboxylic acids Using QSAR and DFT Based Molecular Surface Electrostatic Potential, Iranian Journal of Pharmaceutical Research 12(4): 745-750.

Hu, R., Doucet, J., Delamar, M., and Zhang, R., 2009, QSAR Models for 2-Amino-6-Arylsulfonylbenzonitriles and Congeners HIV-1 Reverse Transcriptase Inhibitors Based on Linear and Nonlinear Regression Methods, European Journal of Medicinal Chemistry 44: 2158–2171.

HyperCube, Inc, 2011, HyperChemTM 8.0.10 for Windows, http://www.hyper.com.

IBM Corp. Released 2010. IBM SPSS Statistics for Windows, Version 19.0. Armonk, NY: IBM Corp.

Jain, S.V., Ghate, M., Bhadoriya, K.S., Bar, S.B., Chaudhari, A., and Borse, J.S., 2012, 2D, 3D-QSAR and Docking Studies of 1,2,3-Thiadiazole Thioacetanilides Analogues as Potent HIV-1 Non-Nucleoside Reverse Transcriptase Inhibitors, Organic Medicinal Chemistry Letter 2: 22-34.

Low, Y., Uehara, T., Minowa, Y., Yamada, H., Ohno, Y., Urushidani, T., Sedykh, A., Muratov, E., Kuz’min, V., Fourches, D., Zhu, H., Rusyn, I. and Tropsha, A., 2011, Predicting Drug-Induced Hepatotoxicity Using QSAR and Toaxicogenomics Approaches, Chemical Research in Toxicology 24: 1251-1262.

MATLAB (Version 7.8.0.347 (R2009a), http://www.mathworks.com.

Podunavac-Kuzmanović, S.O., Cvetković, D.D., and Barna, D.J., 2009, QSAR Analysis of 2-Amino or 2-Methyl-1-Substituted Benzimidazoles Against Pseudomonas aeruginosa, International Journal of Molecular Sciences 10 : 1670-1682.

Ruiz, P., Begluitti, G., Tincher, T., Wheeler, J. and Mumtaz, M., 2012, Prediction of Acute Mammalian Toxicity Using QSAR Methods: A Case Study of Sulfur Mustard and Its Breakdown Products, Molecules 17: 8982-9001.

Sun, H. and Scott, D.O., 2010, Structure-based Drug Metabolism Predictions for Drug Design, Chemical Biology and Drug Design 75: 3-17.

Sun, L., Zhu, L., Qian, K., Qin, B., Huang, L., Chen, C.H., Lee, K., and Xie, L., 2012, Design, Synthesis, and Preclinical Evaluations of Novel 4‑Substituted 1,5-Diarylanilines as Potent HIV‑1 Non-Nucleoside Reverse Transcriptase Inhibitor (NNRTI) Drug Candidates, Journal of Medicinal Chemistry 55: 7219-7229.

Wang, Z., Kai, Z., Beier, R.C., Shen, J. and Yang, X., 2012, Investigation of Antigen-Antibody Interactions of Sulfonamides with a Monoclonal Antibody in a Fluorescence Polarization Immunoassay Using 3D-QSAR Models, International Journal of Molecular Sciences 13: 6334-6351.




DOI: http://dx.doi.org/10.20884/1.jm.2016.11.2.242

Metric logoArticle Metrics


This article has been viewed: 1519 (times)
PDF file viewed / downloaded: 930 (times)

Refbacks

  • There are currently no refbacks.


Copyright (c) 2016 Molekul

Logo Unsoed

Molekul

Jurnal Ilmiah Kimia
Department of Chemistry, Faculty of Mathematics and Natural Sciences,
Universitas Jenderal Soedirman, Purwokerto, Indonesia

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.