MOLECULAR DIAGNOSTIC RATIOS TO ASSESS THE APPORTIONMENT OF PETROLEUM HYDROCARBONS CONTAMINANTION IN MARINE SEDIMENT

PDF
Full Text
Agung Dhamar Syakti

Abstract


As maritime fulcrum nation, in Indonesia, marine environmental analytical chemistry field is still under developed. So that why, this review paper aims to provide basic understanding of the use some molecular diagnostic indices using n-alkanes indexes and polycyclic aromatic hydrocarbons (PAHs) diagnostic ratios to estimate the source of apportionment of the hydrocarbons contamination and origin. The n-alkane chromatograms were then used to characterize the predominance of petrogenic or biogenic either terrestrial or aquatic. Furthermore, characterization allowed to discriminate riverine versus marine input. The occurrence of a broad unresolved complex mixture can be an evidence of biodegraded petroleum residues. For aromatic compounds, the prevalence of petrogenic, pyrolitic, and combustion-derived can be easily plotted by using isomers ratio calculation. This paper thus provides useful information on the hydrocarbon contamination origin, especially in marine sediments. Further researches should be undertaken in order to validate the use of molecular diagnostic ratio with isotopic approach.


Keywords


marin pollution; environmental chemistry; biomarker; n-alkanes; policyclic aromatic hydrocarbons

References


Asia, L., Mazouz, S., Guiliano, M., Doumenq, P., & Mille, G. (2009). Occurrence and distribution of hydrocarbons in surface sediments from Marseille Bay (France). Marine Pollution Bulletin, 58(3), 443–51. http://doi.org/10.1016/j.marpolbul.2008.11.022

Barakat, A. O., Qian, Y., Kim, M., & Kennicutt Ii, M. C. (2002). Compositional Changes of Aromatic Steroid Hydrocarbons in Naturally Weathered Oil Residues in the Egyptian Western Desert. Environmental Forensics, 3(3-4), 219–225. http://doi.org/10.1080/713848375

Bray , E., Evans, D.D. (1961). Distribution of n-paraffin as a clue to recognition of source of beds. Geochimica et Cosmochimica Acta, 22, 2-15. http://doi.org/ 10.1016/0016-7037(61)90069-2

Budzinski, H., Jones, I., Bellocq, J., Piérard, C., & Garrigues, P. (1997). Evaluation of sediment contamination by polycyclic aromatic hydrocarbons in the Gironde estuary. In Marine Chemistry (Vol. 58, pp. 85–97). http://doi.org/10.1016/S0304-4203(97)00028-5

Commendatore, M. G., Nievas, M. L., Amin, O., & Esteves, J. L. (2012). Sources and distribution of aliphatic and polyaromatic hydrocarbons in coastal sediments from the Ushuaia Bay (Tierra del Fuego, Patagonia, Argentina). Marine Environmental Research, 74, 20–31. http://doi.org/10.1016/j.marenvres.2011.11.010

Culotta, L., Gianguzza, A., & Orecchio, S. (2005). Leaves of Nerium oleander L. as bioaccumulators of Polycyclic Aromatic Hydrocarbons (PAH) in the air of Palermo (Italy): Extraction and GC-MS analysis, distribution and sources. Polycyclic Aromatic Compounds, 25(4), 327–344. http://doi.org/10.1080/10406630500227262

Drozdova, S., Ritter, W., Lendl, B., & Rosenberg, E. (2013). Challenges in the determination of petroleum hydrocarbons in water by gas chromatography (hydrocarbon index). Fuel, 113, 527–536. http://doi.org/10.1016/j.fuel.2013.03.058

Farrington, J. W., & Quinn, J. G. (2015). “Unresolved Complex Mixture” (UCM): A brief history of the term and moving beyond it. Marine Pollution Bulletin, 96(1), 29–31. http://doi.org/10.1016/j.marpolbul.2015.04.039

Ficken, K. ., Wooller, M. ., Swain, D. ., Street-Perrott, F. ., & Eglinton, G. (2002). Reconstruction of a subalpine grass-dominated ecosystem, Lake Rutundu, Mount Kenya: a novel multi-proxy approach. Palaeogeography, Palaeoclimatology, Palaeoecology, 177(1), 137–149. http://doi.org/10.1016/S0031-0182(01)00356-X

Harris, K. A., Yunker, M. B., Dangerfield, N., & Ross, P. S. (2011). Sediment-associated aliphatic and aromatic hydrocarbons in coastal British Columbia, Canada: Concentrations, composition, and associated risks to protected sea otters. Environmental Pollution, 159(10), 2665–2674. http://doi.org/10.1016/j.envpol.2011.05.033

INERIS, Pichard, A., Bisson, M., Houeix, N., Gay, G., Lacroix, G., … Gillet, C. (2015). Fiche de données toxicologiques et environnementales des substances chimiques - Cuivre et ses dérivés. Ineris, 1–66.

Kanzari, F., Syakti, A. D., Asia, L., Malleret, L., Piram, A., Mille, G., & Doumenq, P. (2014). Distributions and sources of persistent organic pollutants (aliphatic hydrocarbons, PAHs, PCBs and pesticides) in surface sediments of an industrialized urban river (Huveaune), France. Science of The Total Environment, 478, 141–151. http://doi.org/10.1016/j.scitotenv.2014.01.065

Koch, B. P., Souza Filho, P. W. M., Behling, H., Cohen, M. C. L., Kattner, G., Rullk??tter, J., … Lara, R. J. (2011). Triterpenols in mangrove sediments as a proxy for organic matter derived from the red mangrove (Rhizophora mangle). Organic Geochemistry, 42(1), 62–73. http://doi.org/10.1016/j.orggeochem.2010.10.007

Liu, Z., Liu, J., Gardner, W. S., Shank, G. C., & Ostrom, N. E. (2016). The impact of Deepwater Horizon oil spill on petroleum hydrocarbons in surface waters of the northern Gulf of Mexico. Deep Sea Research Part II: Topical Studies in Oceanography, 129, 292–300. http://doi.org/10.1016/j.dsr2.2014.01.013

Marzi, R., Torkelson, B. E., & Olson, R. K. (1993). A revised carbon preference index. Organic Geochemistry, 20(8), 1303–1306. http://doi.org/10.1016/0146-6380(93)90016-5

McIntyre, C. P., Harvey, P. M., Ferguson, S., Wressnig, A. M., Snape, I., & George, S. C. (2007). Determining the extent of weathering of spilled fuel in contaminated soil using the diastereomers of pristane and phytane. Organic Geochemistry, 38(12), 2131–2134. http://doi.org/10.1016/j.orggeochem.2007.07.010

Meyers, P. a. (2003). Applications of organic geochemistry to paleolimnological reconstructions: a summary of examples from the Laurentian Great Lakes. Organic Geochemistry, 34(2), 261–289. http://doi.org/10.1016/S0146-6380(02)00168-7

Meyers, P. a. (1997). Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes. Organic Geochemistry, 27(5-6), 213–250. http://doi.org/10.1016/S0146-6380(97)00049-1

Mille, G., Asia, L., Guiliano, M., Malleret, L., & Doumenq, P. (2007). Hydrocarbons in coastal sediments from the Mediterranean sea (Gulf of Fos area, France). Marine Pollution Bulletin, 54(5), 566–75. http://doi.org/10.1016/j.marpolbul.2006.12.009

Morrison, R. D. (2000). Critical Review of Environmental Forensic Techniques: Part I. Environmental Forensics, 1(4), 157–173. http://doi.org/10.1006/enfo.2000.0017

Nayar, S., Goh, B. P. ., & Chou, L. . (2004). The impact of petroleum hydrocarbons (diesel) on periphyton in an impacted tropical estuary based on in situ microcosms. Journal of Experimental Marine Biology and Ecology, 302(2), 213–232. http://doi.org/10.1016/j.jembe.2003.10.016

Omotoye, S. J., Adekola, S. A., Adepoju, A., & Akinlua, A. (2016). Thermal Maturity Assessment and Characterization of Selected Oil Samples from the Niger Delta, Nigeria. Energy and Fuels, 30(1), 104–111. http://doi.org/10.1021/acs.energyfuels.5b01902

Perra, G., Pozo, K., Guerranti, C., Lazzeri, D., Volpi, V., Corsolini, S., & Focardi, S. (2011). Levels and spatial distribution of polycyclic aromatic hydrocarbons (PAHs) in superficial sediment from 15 Italian marine protected areas (MPA). Marine Pollution Bulletin, 62(4), 874–877. http://doi.org/10.1016/j.marpolbul.2011.01.023

Powell, T., Tenhaven, H., & Rullkoter, J. (1988). Pristane/phytane ratio as environmental indicator= Le rapport pristane-phytane comme indicateur de milieu. Nature. Retrieved from http://cat.inist.fr/?aModele=afficheN&cpsidt=7695309npapers2://publication/uuid/97EBBB55-AEED-40A2-9D92-34FD45AAC27F

Rajput, P., Sarin, M. M., Sharma, D., & Singh, D. (2014). Atmospheric polycyclic aromatic hydrocarbons and isomer ratios as tracers of biomass burning emissions in Northern India. Environmental Science and Pollution Research, 21(8), 5724–5729. http://doi.org/10.1007/s11356-014-2496-5

Resmi, P., Manju, M. N., Gireeshkumar, T. R., Ratheesh Kumar, C. S., & Chandramohanakumar, N. (2016). Source characterisation of Sedimentary organic matter in mangrove ecosystems of northern Kerala, India: Inferences from bulk characterisation and hydrocarbon biomarkers. Regional Studies in Marine Science, 7, 43–54. http://doi.org/10.1016/j.rsma.2016.05.006

Rontani, J.-F., & Bonin, P. (2011). Production of pristane and phytane in the marine environment: role of prokaryotes. Research in Microbiology, 162(9), 923–33. http://doi.org/10.1016/j.resmic.2011.01.012

Short, J. W., & Springman, K. R. (2016). 24 – Identification of hydrocarbons in biological samples for source determination. In Standard Handbook Oil Spill Environmental Forensics (pp. 1039–1069). http://doi.org/10.1016/B978-0-12-803832-1.00024-6

Sikes, E. L., Uhle, M. E., Nodder, S. D., & Howard, M. E. (2009). Sources of organic matter in a coastal marine environment: Evidence from n-alkanes and their δ13C distributions in the Hauraki Gulf, New Zealand. Marine Chemistry, 113(3-4), 149–163. http://doi.org/10.1016/j.marchem.2008.12.003

Sprovieri, M., Feo, M. L., Prevedello, L., Manta, D. S., Sammartino, S., Tamburrino, S., & Marsella, E. (2007). Heavy metals, polycyclic aromatic hydrocarbons and polychlorinated biphenyls in surface sediments of the Naples harbour (southern Italy). Chemosphere, 67(5), 998–1009. http://doi.org/10.1016/j.chemosphere.2006.10.055

Syakti, a, Mazzella, N., Nerini, D., Guiliano, M., Bertrand, J., & Doumenq, P. (2006). Phospholipid fatty acids of a marine sedimentary microbial community in a laboratory microcosm: Responses to petroleum hydrocarbon contamination. Organic Geochemistry, 37(11), 1617–1628. http://doi.org/10.1016/j.orggeochem.2006.01.009

Syakti, A. D., Asia, L., Kanzari, F., & Umasangadji, H. (2012). Distribution of organochlorine pesticides ( OCs ) and polychlorinated biphenyls ( PCBs ) in marine sediments directly exposed to wastewater from Cortiou , Marseille, 1524–1535. http://doi.org/10.1007/s11356-011-0640-z

Syakti, A. D., Hidayati, N. V., Hilmi, E., Piram, A., & Doumenq, P. (2013). Source apportionment of sedimentary hydrocarbons in the Segara Anakan Nature Reserve, Indonesia. Marine Pollution Bulletin, 74(1), 141–148. http://doi.org/10.1016/j.marpolbul.2013.07.015

Syakti, A. D., Mazzella, N., Torre, F., Acquaviva, M., Gilewicz, M., Guiliano, M., … Doumenq, P. (2006). Influence of growth phase on the phospholipidic fatty acid composition of two marine bacterial strains in pure and mixed cultures. Research in Microbiology, 157(5), 479–86. http://doi.org/10.1016/j.resmic.2005.11.001

Wang, X., Xu, H., Zhou, Y., Wu, C., & Kanchanopas-Barnette, P. (2015). Distribution and source apportionment of polycyclic aromatic hydrocarbons in surface sediments from Zhoushan Archipelago and Xiangshan Harbor, East China Sea. Marine Pollution Bulletin, 101 (2), 895-902. http://doi.org/10.1016/j.marpolbul.2015.10.073

Wang, Z., Yang, C., Kelly-Hooper, F., Hollebone, B. P., Peng, X., Brown, C. E., … Yang, Z. (2009). Forensic differentiation of biogenic organic compounds from petroleum hydrocarbons in biogenic and petrogenic compounds cross-contaminated soils and sediments. Journal of Chromatography A, 1216(7), 1174–1191. http://doi.org/10.1016/j.chroma.2008.12.036

Yan, J., Liu, J., Shi, X., You, X., & Cao, Z. (2016). Polycyclic aromatic hydrocarbons (PAHs) in water from three estuaries of China: Distribution, seasonal variations and ecological risk assessment. Marine Pollution Bulletin, 109(1), 471–479. http://doi.org/10.1016/j.marpolbul.2016.05.025

Yunker, M. B., & Macdonald, R. W. (2003). Alkane and PAH depositional history, sources and fluxes in sediments from the Fraser River Basin and Strait of Georgia, Canada. Organic Geochemistry, 34(10), 1429–1454. http://doi.org/10.1016/S0146-6380(03)00136-0

Zheng, B., Wang, L., Lei, K., & Nan, B. (2016). Distribution and ecological risk assessment of polycyclic aromatic hydrocarbons in water, suspended particulate matter and sediment from Daliao River estuary and the adjacent area, China. Chemosphere, 149, 91–100. http://doi.org/10.1016/j.chemosphere.2016.01.039




DOI: http://dx.doi.org/10.20884/1.jm.2016.11.2.236

Metric logoArticle Metrics


This article has been viewed: 273 (times)
PDF file viewed / downloaded: 390 (times)

Refbacks

  • There are currently no refbacks.


Logo Unsoed

Molekul

Jurnal Ilmiah Kimia
Department of Chemistry, Faculty of Mathematics and Natural Sciences,
Universitas Jenderal Soedirman, Purwokerto, Indonesia

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.